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Abstract. We present a computation of the charge and the magnetic moment of the neutrino in the recently
developed electro-weak Background Field Method and in the linear Ré’ gauge. First, we deduce a formal
Ward-Takahashi identity which implies the immediate cancellation of the neutrino electric charge. This
Ward-Takahashi identity is as simple as that for QED. The computation of the (proper and improper)
one loop vertex diagrams contributing to the neutrino electric charge is also presented in an arbitrary
gauge, checking in this way the Ward-Takahashi identity previously obtained. Finally, the calculation of
the magnetic moment of the neutrino, in the minimal extension of the Standard Model with massive Dirac
neutrinos, is presented, showing its gauge parameter and gauge structure independence explicitly.

1 Introduction

The one-loop calculation of the neutrino electric charge
(NEC) and the neutrino magnetic moment (NMM) in the
Standard Model (SM) [1] turns out to be one of the sim-
plest calculations beyond tree level and consequently a
convenient ground where one can test methods and com-
pare techniques.

The background field method (BFM) was first intro-
duced by DeWitt [2] in the context of Quantum Gravity
as a formalism for quantizing gauge field theories while
retaining explicit gauge invariance at one-loop. The multi-
loop extension of the method was given by 't Hooft [3], De-
Witt [4], Boulware [5], Abbott [6], Rebhan and Wirthumer
[7]. Using this extension of the BFM, explicit two-loop cal-
culations of the 8 function for pure Yang-Mills theory were
made first in the Feynman gauge by Ichinose and Omote
[8], and later in the general gauge by Capper and MacLean
[9].

The electro-weak version of the BFM was introduced
by Denner, Weiglein and Dittmaier [10,11]. In this version
the gauge invariance of the BFM effective action implies
simple (QED-like) Ward-Takahashi (WT) identities for
the vertex function which, as a consequence, possess de-
sirable theoretical properties like an improved high-energy
behaviour. The BFM gauge invariance not only admits the
usual on-shell renormalization but even simplifies its tech-
nical realization. Moreover, the formalism provides addi-
tional advantages such as simplifications in the Feynman
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rules and the possibility to use different gauges for tree
and loop lines in Feynman diagrams, allowing to reduce
the number of graphs.

For these reasons this paper is devoted to the presen-
tation of the calculation of the NEC and the NMM in the
BFM as well as in the linear RF with the aim of mak-
ing a useful comparison of the two methods. General ex-
pressions carrying the full dependence in ¢2, masses and
gauge parameter are necessary to see how the form factor
we are interested in get rid of divergent (infinite) parts
and gauge parameter dependences. The paper is devoted
to the analysis of how the cancellation among the different
contributions occur.

The paper is organized as follows. In Sect. 2 we get
the cancellation of the NEC by building a WT identity in
the BFM and using other WT identity which is proved in
Appendix A. In Sect. 3 we calculate the NEC in the BFM
and in the linear RgL gauge by an explicit calculation of
the contributing Feynman diagrams. In Sect. 4 a similar
calculation is presented for the NMM. This work is part
of a most general one in the search for gauge independent
form factors. Appendix B contains news relations between
the scalar three point functions Cy and By, useful for the
calculation.

2 Ward—-Takahashi identity in the BFM

The most general Lorentz invariant decomposition of the
vvy vertex is given by [12-14]
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Fig. 1. a Neutrino vertex /1:1’”(;97 0,p). b Neutrino self-energy

S p)

Fig. 2. a Neutrino vertex Aﬁw(p, 0,p). b Neutrino self-energy
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where ¢ = p — p/, £ is the gauge parameter, [ refers to
one of the leptonic families e, u, or 7 and Fype(g?, €) and
Fuann(q2,€) are, respectively, the Dirac and Pauli form
factors of the neutrino. At zero momentum transfer they
define the NEC and the NMM, respectively.

In the calculations presented in this paper, £ is the
gauge parameter of the W boson, f‘g in the BFM and

&w in the linear REL gauge. In both cases this is the only
gauge parameter in our formulas. We explicitly keep track
of this gauge parameter in order to be able to discuss later
the problem of defining gauge independent form factors in
a more general context.

We now proceed to consider the one-loop Feynman dia-
grams that contribute to the vy proper vertex. Using the
Feynman rules for the BFM, given in Appendix A of [11],
one immediately finds that only four diagrams contribute
to this vertex (Figs. la to 4a). This is a typical feature of
the non-linear structure of the BFM gauge fixing terms. In
the linear RéL gauge there are six proper vertex diagrams
as discussed in [17]. With the integral expressions for these
four diagrams at zero momentum transfer we derive then
a WT identity for the NEC following the analysis made
in the non linear Ré\”’ gauge [15,16]. The vertex shown in
Fig. 1a can be written, in the limit of zero momentum for
the photon, as

e3m?

/ d*k
253, M3, | (2m)*
Xw4 Sp(k +p)’y#SF(k +p)Ap(k)w- (2)

il _
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Fig. 3. a Neutrino vertex A} "(p,0, p). b Neutrino self-energy
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where the superscript labels the particles in the loop, Sr(k
+ p) and Ap(k) are the propagators of the fermion and
scalar field respectively, and the w4 are the chirality pro-
jectors. Let us now consider the diagram shown in Fig. 1b.
The self-energy is given by

Zwl( )= e?m? / dk
V=923, | @)t

From (2) and (3) the identity

wi Ap(k)Sp(k+p)w— .
3)

!
—e€ % = Aﬁ”(paoap)a

(4)

follows. Similarly, the vertex of diagram 2a is given by
emj} / d*k
- w AF k— p
253, M3, ) (2m)t (k=p)
x[2(k — p), ] Ar (k — p)Sp (K)o,

and the corresponding self-energy diagram 2b is

l
A77(p, 0,p) =

()

2,,2

ol e‘m d*k
2 =550 (2m)
wMw
so that they satisfy the identity

a3 %!
€ zajp#(p) :Aﬁwl(P,O,m-

wiAp(k —p)Sr(k)w-
(6)

(7)

Considering (4) and (7) we see that the contributions to
the vertex function of diagrams la and 2a cancel each
other. This is also the case in the RgL gauge, where the
diagrams shown in Fig. 1 and 2 (with the change v; — 7)
lead to relations similar to those of equations (4) and (7).

The other two diagrams that contribute to the vertex
involve a W internal line. For the vertex shown in Fig. 3a
we obtain

3 d*k
A (p,0,p) = —L/i Y*w_Sr(k+p)

2s%, ) (2m)*

%Y, Sk (k + p)y’ D (k)w_ (8)

where Do%(k) is the propagator of the W boson. The cor-

responding part of the self-energy of the neutrino (diagram
3b) is then

o2
ZWZ(P) == 252, / @)t V¥ w_ Dy (k) Se(k+p)w- .
(9)
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Fig. 4. a Neutrino vertex A} "' (p,0,p). b Neutrino self-
Wi
energy Z (p)

From Equations (8) and (9), it is straightforward to get
the identity

) Wi
—e M — AZVH(]%O’]))’

which is a relation similar to that obtained in the Ré
gauge.

The last contribution to the proper vertex, Fig. 4a,
involves the non Abelian vertex vz WW. It is given by

(p,0,p)

e / Ak
252, | (2m)* -

WWl
Au

xfc%ﬁw(k—p,O,k—p)vﬁSF(k)w,, (11)
where we have defined
ra™ (k—p, 0,k —p) (12)

= eD}V, (k —p)Varg W = (k = p), 0, (k — p)| D (k — p),

(03

with Va‘%fw being the AWW—coupling of a background
field A with two W’s quantum fields (its explicit form
can be found in (A.33) and (A.34) of [11]). Using the con-
tracted vertex I” (%ﬁw defined in equation (12) it is possible
to prove the WT identity

8Dc%(l)
ol+

where | = k — p. This formula is crucial for the compu-
tation because it relates the quantum W’s fields with the
background A field and can not be obtained by the usual
derivative procedure of the functional generator. Equation
(13) is formally the same as (5) in [15] for the non linear
RéVL gauge. The proof of this WT identity is given in
Appendix A.

Taking now into account that the corresponding con-
tribution to the self-energy (diagram 4b) is

- :FWAW(laOal)a

afp (13)

€2 d*k
ZWZ(P) == E / W v WDO%(]C—P)’YBSF(]?)((UM;

with the help of the WT identity (13), it is easy to prove
the relation
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Fig. 5a—d. Vertex contributions to the NEC and NMM in the
BFM

o Wi
e Xjapu@ = AZVWI (p707p)7
so that the contributions of diagrams 3 and 4 cancel each
other again. The relation shown in (15) doesn’t exist in
the linear Ré gauge.

With only these four diagrams the cancellation of the
NEC is not obtained in the Ré’ gauge. There are two ad-
ditional diagrams involving the yW ¢ vertex plus one im-
proper diagram (transverse part of vZ self-energy) that

L

should be considered. Only then one obtains [17] Q¢ =
0, in an obvious notation. In the BFM the last self-energy
also exists, but its contribution to the NEC vanishes [see
(34) in [11]] because the transverse part of the v5Z5 self-
energy is zero.

In the BFM the four proper vertices at zero momentum
transfer, satisfy the relation

(15)

AP 4 Ag 4 AT A =0, (16)
which implies the vanishing of the NEC,
orm = Fip(0.64) = 0. (17)

The proof of the exactly cancellation of the electro-mag-
netic proper neutrino vertex at one-loop, is a consequence
of the most general WT identity (see (36) in the [11]) valid
to all orders in perturbation theory.

3 Neutrino electric charge, explicit calculation

In this section we present a complete calculation of the
neutrino electric charge using: a) the BFM and b) the
usual formulation in the linear RgL gauge. In both cases
the calculation is done for arbitrary ¢ of the photon and
carrying all the gauge dependence on the £ parameter [18,
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19]. Cancellation of the gauge dependence, in the ¢ — 0

limit, will be explicitly shown, using an expansion of the

different contributions to the Dirac form factor around
2

q- =0.

3.1 Calculation in the BFM

The proper diagrams contributing to the NEC are given in
Fig. 5. Using the Feynman rules of the electroweak BFM
[11] and after some algebra one finds for the Dirac form
factor defined in (1), at ¢ = 0, the following contribu-
tions:

BFM

v
Fig. 5a

= Fir (7 = 0.6)
aem?

2
64m M3, s, (M, — miely )

x { (M, —meld ) (M, — 3miel))

Fig. 5a
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& &
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v

Fig. 5b
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Fig. 5b
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2

Qo (art i) mowsas sy
2

el | =26l mi + M3, (= 3(¢l) +48 +3)m?
+2My, (255/ — 3)} Bo(0;m}, m})
~ M3 (2MFy — miel) ) (mf — M3)?
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xBo| 03— v
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BFM

Qu,

Fig. 5d

= Fip (7 = 0.Y)

BFM

Fig. 5d

(21)

it Fig. 5b

Notice that we have kept explicitly the gauge dependence
in all equations. From (18-21) it obviously follows that the
NEC vanishes,

BFM

Qv = Q,

Fig. 5a

:O7

BFM BFM BFM

+ 9, + 9,

Fig. 5b

+Qy,

Fig. 5¢

Fig. 5d

(22)

in agreement with the result (17), obtained using the
Ward-Takahashi identity.

Expressions (18-21) have been obtained applying a
Taylor expansion, around ¢?> = 0, to the complete con-
tribution of each diagram. The complete contribution of

all diagrams to the Fﬁgé/’(

q2,§g ) form factor is given
in [20]. To obtain these formulae we have made use of the
new relations between scalar three point function, Cy, and
two point functions By, given in Appendix B.

With these formulae it is easy to prove for the complete
form factor that again

Opr = lm P (¢ 68) =0 (23)

3.2 Calculation in the linear Rg‘ gauge

The proper vertices contributing to the NEC in the linear
RgL gauge are those given in Fig. 6. Notice that there are
two diagrams that do not appear in the BEM. A procedure
similar to that used in the previous subsection leads to the
following result:

RE RE o
Q. = FN}%C(q =0,{w)
Fig. 6a Fig. 6a
=P (P =0 —ew)| 59
Fig. 5a
RL RL
9, ) = Fz\ugzc(qz = 07§W)
Fig. 6b Fig. 6b
= Fa (=068 —ew)| 5 (29)
Fig. 5b
rL RrL
9 ) = FNEC’(q2 = 07§W)
Fig. 6c Fig. 6c
=i (? =088 —ew)| 5 (26)
Fig. 5¢
RE rL
Q| °  =Fyicld® =0,6w)|
Fig. 6d Fig. 6d

ae
6dm(m? — M2,)2s3 (M3, — mZéw) (1 — Ew)éw

X{[5m12(§w + 1) + M (§w — 5)]

x(mi — Mgy ) (M, — mi€w) (1 — &w)
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Fig. 6a—f. Vertex contributions to the NEC and NMM in the linear RgL gauge
+6[m?(1 + &w) — 2M2 ) mi (1 — &w)éw Bo (0; m?, m?) _ Pt 2
52 ‘;V ! P T = Fyic(q” =0,6w) oo ou
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ig. Ge
M2, M2 L RL
—6M§, (mf — M,)?Bo | 0; 2, =2 ) & (27) +Fyse(d® = 0,6w) +3 0 (29)
Sw o &w Fig. 6f vz
RL
RE where »°_% is the bosonic contribution of the transverse
Qu, — part of the v Z self-energy (improper vertex) [17,21], shown
rE in Fig. 7. This self-energy is computed in [20] for arbitrary
= Frie(q” =0,¢éw) ¢® and, from there, we obtain
Fig. 6e
RL
— z
~ ol g i = 0.6w)
RE 4 vZ 45WCWM%
:FNEc(q :O7§W) Fig. 6 ae
B ae - 6dmstyEw (1 — &w)
64m(m} — M) sty (M, — misw)?(1 - Ew)

1
{ ¥ — MMy — miw ) (1 o)
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+&w [mi (26w + 1) — 3Mmi (mi — My,)

MW MW
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Therefore, as in the BFM, the contributions from the di-
agrams 6a and 6c¢ cancel each other, but the sum of the
contributions of the diagrams 6b, 6d, 6e and 6f does not
vanish. However, there exists an important relation be-
tween BFM and RgL gauge

(28)

Fe (e = 0.68 = €w)

Fig. 5d

X{(5§w + D —éw)

—6&3 Bo(0; Mg, , M)

MW My,
4 £W>}. (30

Summing up all these contributions one get an equa-
tion for the NEC which is formally the same as that given
n (22), so that

(2§W + 1)30 (O

REL RL RL RL
QVZ = Qul + QVL + Qlll
Fig. 6a Fig. 6b Fig. 6c
rL Rg
+Qu, + 9y, + Qu, + E
Fig. 6d Fig. 6e Fig. 6f ’YZ

(31)
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v v

v

Fig. 7. Improper vertex contribution to the NEC in the linear
REL gauge

4 Neutrino magnetic moment

4.1 Computation in the BFM and the linear Rf gauge

In the minimal extension of the Standard Model (SM), in
which a right handed neutrino for each family is added,
a neutrino magnetic moment (NMM) arises naturally. We
shall compute it here, both in the BFM and the RgL gauge,
considering massive Dirac neutrinos with no flavor mixing
[22]. Tt is given by the Pauli form factor of (1),

.rL

MKy, = lim FN]W]\/IY ¢ (q27ml/17£) .
q2—0

(32)

As in the previous section the contributing diagrams are
given in Fig. 5 for the BFM and in Fig. 6 for the linear
RSL gauge. We thus obtain

BFM RgL emVLGF b8
) _emGefse 1
Vil pig. 50 = Mo Fig. 6a 4722 | 12 + (33)
BFM . Ré
Mo, Fig. 5b Ho Fig. 6b

em,,Grp | 2 5 1
47r2\/§{3+x[3 2+§( Ogm+0g€)]

+} (34)
BFM _ Ré
Huy Fig. 5¢ Hou Fig. 6c
em,,Gp 5
=" _gf|l=+logz+ 1o + -0, (35
RCN { §|3 +1los gé } (35)
RrL G 1
3 _ €My, G g ( )
. — Pl ~ (75 RN 36
M ! Fig. 6d 47T2\/§ {12 xé + } ( )
RL RL & 1
¢ _ ¢ _emyGr ,(1_ ) b (37
Ho Fig. 6e Hw Fig. 6f 47T2ﬂ {8 ) ’( )
BFM _ Ré + Rg
ol gy sa = Mo Fig. 6d Hon Figs. 6e+6f
_emwGF{5 T 1_'_% +}’ (38)

T oar22 16 412
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where G is the Fermi constant, z = m? /M2, and the
expressions are given up to second order in the x expan-
sion. As we can see, the contributions from diagrams 5a,
5b and 5c are the same in the BFM and in the linear RéL

gauge (just by changing EZQV — &w), and the sum of the
contributions of diagrams 6d, 6e and 6f is equal to the
contribution of Fig. 5d (with the same substitution in the
gauge parameter). The dependence in the gauge parame-
ter £ is explicitly shown in the formulae. The cancellation
of the gauge parameter is then obtained after summing
up all contributions. However, to leading (first) order in
m,, each diagram separately is finite, as well as gauge
parameter and gauge structure (linear or not linear) inde-
pendent. In this limit we recover the well know expression
of the neutrino magnetic moment (NMM) [23]

B 3em,,Gr
Ho 872/2

Even in the RgL gauge, there are no contributions to the

magnetic anomaly coming from the vZ self-energy.
.pL
The exact expressions for the form factor Fi;]]iR (my,,

€) (at ¢* = 0) to all orders in x is given in [20]. From there
and using the relations of Appendix B one gets the exact
expression

(39)

BFM;RL
Fyam ¢ (mul)
e 3my, m;l — 5ml2M{}V + 2M§V
4 452, (m? — ME,)? 2M32,

mi [Bo(0; My, M) — By (0;mi, m)]
+ Ry , (40)
my — My
where the cancellation of the gauge dependence has been
made evident. Using now the expression of the scalar two

point function, By, one gets [22]

BFM;RL
NJI\;JW ¢ (mul)
__emy,Gp 3[® + 2(logx — 3)2% + T2 — 2] (a1)
47‘(‘2\/5 4(1 — .13)3 ’

that at leading order in x coincides with (39).

5 Conclusions

We have calculated the neutrino electric charge in the
background field method and in the linear RY gauge for ar-
bitrary values of the gauge fixing parameters. In the BFM
it has been obtained in two different ways: a) making use
of the usual Ward-Takahashi identities for self-energy and
vertex one loop diagrams in addition to a new one, de-
duced for the non Abelian vertex of a background field A
and two quantum W’s fields (WAW); and b) by comput-
ing explicitly the contributing diagrams and checking in
this way the WT identities. In the linear RgL gauge more
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diagrams have to be taken into account, including the im-
proper vertex. Therefore the BFM enjoys the simplicity
of theories with nonlinear gauge fixing terms: fewer dia-
grams and simple WT identities. We have found that, as
expected, both methods lead to the same result, namely:
the neutrino electric charge vanishes.

For Dirac massive neutrinos, we have calculated the
magnetic moment in both BFM and REL gauge, reproduc-

ing known results at leading order in (371-). We have es-
tablished the diagrammatic correspondence between the
two methods and the gauge parameter cancellations. Fi-
nally, we showed its gauge parameter and gauge structure
independence explicitly.
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Appendix A. Ward—Takahashi identity
with a background photon
and two W’s quantum fields

When the momentum of the background photon is zero,
the vertex can be written as [see (A.33) ! from [11]]

V%f‘w(—l,o,l) = —ie[ =290 + (1 - fg)gw’lﬁ’

+(1- €8 ) gl |. (A1)

Contracting the vertex tensor (A.1) with the W's quan-
tum propagators we get

L (1,0,0)
(1 - EZgV) (Juals + gsula) — 29a8ly

(-0t )

(1 - 53)912(%#15 + gusla)

(-t ) (- )

N 4014151,
() ()

! NOTE: We make the change 58/ — 1/{8/ in the original
Feynman [11] rules for future applications.

=€
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2(1 - € ) Olalal
— 5 —
RTINS
2eW 02121, 151
- ‘g %, (A.2)
2
) (- )
&
where we have defined
1
0=1- ar (A.3)
Q

On the other hand, the derivative of the boson propagator
W is
aD 5(0)
ol

— *e(lagpﬂ + lﬁg/wz) _ 2Z/Lg(¥ﬁ

) (2 ) ()

261,151,

M) (7 - )

(12 —

1 1

+ 5 , (A4)

(7)) (7 g)

Q
so that the comparison of (A.2) and (A.4) gives
oDY.(1)

ap WAW

e = I, (1,0,1). (A.5)

Appendix B. Scalar one loop integrals

We present in this Appendix all the scalar one-loop inte-
grals that we encountered in the calculation of the NEC
and NMM [24,25]. The one-loop integrals Ag, By and Cy
are not independent in special kinematical situations [21,
26-28].

— One-point function:

m2
Ag(m?) = m? (A log + 1)
w2

2
with A= - —~g+logdr, (B.1)
€

and where g is the Euler-Mascheroni’s constant.
— Two-point functions:

(m% mz)BO(O ml»



640 L.G. Cabral-Rosetti et al.: Charge and magnetic moment of the neutrino

BO(q2; m%v m%)

= BO(O m%vmg)

+ 2{ m? + m32)[1 4+ By(0,m3,m3))
(

[Ao(m1 Ao(m )]}

4 2,2 4
mi + 10mims + my

)+
S
6(mi —m3

)4
+3(m3 + m3){ (m3 + m3) Bo(0; m3, m3)
~[Ao(m}) +Ao(m3>1}} +0(d"), (B.2)

— Three point functions [29]:

00(07q250;m2aM27M2)
1
= m{BO(OéMQ’mQ) - BO(OQMQ’MQ)}

q2

T 12M2(m? — M2?)*
x{(m2 — M?)(2m* + 5M*m? — M*)

+6M?*m* {BO(O; m?,m?) — By (0; M2, MQ)} }
q4
180M4(m? — M?2)6
><{(m2 — M?*)(3m® — 27M?*mS
+13M°%m? — 2M®)
—60M*mS [BO(O; m2,m2) — Bo(0; M2, MQ)} }

+0(¢%);

— ATM*m*

Co(r270,7°2;m2,M2,M2)
1
(m? — M?2)2 {(

—BO(O;MQ,MQ))}

m? — M?) +m? (BO(O;mQ, m?)

r2

2(m2 — M2)*
+2(m* + 2M3m?) [BO(O; m?, m?)

n {5m4 —AM?m? — M

—Bo(0: M2, MQ)} }

r4

3(m2 _ MZ)G
+3(m8 + 6M3>m?* + 3M*m?)
x [ Bo(0sm?,m?) — Bo(0; M2, M%)| } + 0°);

n {mm6 T OM2m* — 18M*m? — M®

CO(OaQQaO;m%am;mg)
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